Sunday, April 23, 2017

Graphene: The Secret To Low Energy Desalination?



Given that current desalination technologies cost millions of dollars and huge energy input to run it, will the newfangled graphene-based desalination devices drastically cut costs and energy consumption? 

By: Ringo Bones

According to the United Nations, it is expected by the year 2025 14-percent of the world’s population will encounter water scarcity. Given that the current “most energy efficient” way to desalinate water – i.e. reverse osmosis desalination plants – still costs hundreds of millions of dollars to build and their energy requirements is beyond that of a remote small town in sub-Saharan Africa to generate. Fortunately, a new wonder material, like graphene, could drastically slash the energy and cost requirements to build a desalination plant big enough to provide potable water to a typical out of the way small town. 

Graphene-oxide membranes have attracted considerable attention as promising candidates for new filtration technologies, especially ones that are less expensive and require lower energy to operate than existing ones. Now the much sought-after development of making membranes capable of sieving common salts has been achieved. New research demonstrates the real-world potential of providing clean drinking water for millions of people who struggle to access adequate clean water sources. 

When common salts are dissolved in water, they always form a “shell” of water molecules around the salt’s molecular structure. This allows the tiny capillaries of the graphene-oxide membranes to block the salt from flowing along with the water. Water molecules are able to pass through the membrane barrier and flow anomalously fast which is ideal for application of these membranes for desalination. 

Professor Rahul Nair at the University of Manchester said “Realisation of scalable membranes with uniform pore size down to atomic scale is a significant step forward and will open new possibilities for improving the efficiency of desalination technology”. Prof. Nair’s experimental desalination device at the National Graphene Institute of Manchester uses a one-atom thick graphene filter.

1 comment:

Yvette said...

Back in 2013.engineers at Lockheed Martin in the United States demonstrated a graphene-based desalination device that uses 100 times less energy to turn sea water into drinkable water in comparison to current reverse-osmosis desalination devices.